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Abstract — Bitcoin is assessed from the perspective of the 

theory of computation. Specifically, the computational power 

of Bitcoin is determined in the context of both computability 

theory and automata theory. In computability theory, there 

exists a hierarchy of functions, from the most powerful to the 

least powerful: partial recursive, total recursive, primitive 

recursive, elementary recursive, and lower elementary 

recursive. Whilst in automata theory, there exists a hierarchy 

of automata, from the most to least powerful: Turing 

machine, linear bounded automaton, non-deterministic 

pushdown automaton, deterministic pushdown automaton, 

and finite automaton. In both instances, Bitcoin lies within or 

below the least powerful category. Bitcoin is essentially a 

finite automaton that employs a scripting language for data 

manipulation that is even less powerful than a lower 

elementary recursive programming language. Bitcoin is not 

Turing-complete, either in whole or in part. For security 

reasons, Bitcoin was designed to be only as powerful as 

necessary. 

Keywords — Automata theory, Bitcoin, Computability 

theory, Theory of computation, Turing-complete. 

I. INTRODUCTION 

The goal of this paper is to assess Bitcoin[1] in the context 

of the theory of computation. The power of Bitcoin shall be 

assessed in terms of both computability theory and automata 

theory. Computability theory allows us to classify 

programming languages in terms of the set of functions that 

they are able to calculate. Whilst automata theory can be 

used to classify automata by the class of formal languages 

that they are able to recognize. 

The remainder of the paper proceeds as follows. In 

Section II, we utilize computability theory and, in the context 

of Bitcoin, consider five classes of functions in turn, from the 

least to the most powerful: lower elementary recursive, 

elementary recursive, primitive recursive, total recursive, and 

partial recursive. The data-manipulation rules employed by 

Bitcoin are even less powerful than the lower elementary 

recursive functions. Whilst in Section III, we utilize automata 

theory and, in the context of Bitcoin, consider five classes of 

automata, from the least to the most powerful: finite 

automaton, deterministic pushdown automaton, non-

deterministic pushdown automaton, linear bounded 

automaton, and Turing machine. Bitcoin may be considered a 

finite automaton. In Section IV, we conclude. 

This article was written in part whilst working for nChain 

Limited. 

 

II. COMPUTABILITY THEORY 

Computability theory allows us to classify data-

manipulation rules (e.g., programming languages) in terms of 

the set of functions that they are able to calculate. When 

analyzing the power of Bitcoin in the context of 

computability theory, we are concerned with the data-

manipulation rules within the Bitcoin client that govern 

Bitcoin transactions. Bitcoin uses a scripting system for 

processing transactions known as Script. Script is similar to 

Forth, and is a simple, stack-based language processed from 

left to right. In programming languages, a loop provides a 

way of repeating instructions. The two most common loops 

are the while loop and the for loop, but a for loop is merely 

syntactic sugar for a while loop, supporting a subset of the 

use cases that while supports. To avoid the possibility of 

infinite loops, which would consume all available processor 

time and can cause a computer to hang, Script does not 

include any statements that enable loops. Recursion is 

equivalent to a loop plus a stack, so Script also has no 

recursion. Therefore with Script, each instruction is executed 

at most once in a linear manner, and any program will always 

halt. 

Of course, with Script, if one wishes to emulate looping 

through a piece of code n times, one can simply repeat the 

code n times. One can even repeat the code m times and use 

if-then statements such that the code will only be repeated n 

(≤ m) times, where the stack initially contains n.However, 

this is not emulating loops in the proper sense because the 

code should produce the correct result for all n, not just n≤ m. 

We can classify Script in terms of the set of functions that 

the language is able to calculate. The computability hierarchy 

of functions includes partial recursive, total recursive, 

primitive recursive, elementary recursive, and lower 

elementary recursive functions and can be described by the 

nested subsets shown in Fig. 1. Bitcoin Script is included and 

is a proper subset of the lower elementary recursive 

functions. All functions work over the natural numbers. 

http://www.internationaljournalssrg.org/
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Fig. 1 Computability hierarchy of functions 

A. Lower Elementary Recursive Functions 

The lower elementary recursive functions are constructed 

using the following basic functions[2]: 

• The zero function returns zero, f(x) = 0. 

• The successor function, f(x) = x + 1. Via the 

repeated application of a successor function, one 

can achieve addition. 

• Projection functions are used for ignoring 

arguments, for example f(a, b) = a. 

• The subtraction function, f(x, y) = x-y if y<x, or 0 if 

y≥x, is used to define conditionals and iteration. 

• Composition involves applying values from some 

elementary recursive function as an argument to 

another elementary recursive function. If h is 

elementary recursive and each gi is elementary 

recursive, f(x1, …, xn) = h(g1(x1, …, xn), …, gm(x1, 

…, xn)) is elementary recursive. 

• Bounded summation: if g is elementary 

recursive, f(𝑚, 𝑥1, … , 𝑥𝑛) =  ∑ g(𝑖, 𝑥1, … , 𝑥𝑛)𝑚
𝑖=0 is 

elementary recursive. 

The lower elementary recursive functions have 

polynomial growth. Because none of the functions in Script 

has time complexity greater than polynomial, in principle, 

the lower elementary recursive functions can perform 

everything that Script can perform. In order to perform 

bounded summation, one needs finite loops of the form ‘for i 

= 1 to n do…’ where n (the number of times the loop 

executes) is fixed in advance (before the loop starts), and you 

cannot change i or n inside the loop. Lacking loops, it is clear 

that Script is unable to perform bounded summation. 

Therefore, the functions that Script can perform are a proper 

subset of the functions that may be performed by the lower 

elementary recursive functions. Script is thus less powerful 

than any of the five sets of functions defined. 

B. Elementary Recursive Functions 

The elementary recursive functions are functions that can 

be obtained from addition, multiplication, subtraction, and 

division, using basic operations such as substitutions and 

finite summation and product. The definitions of elementary 

recursive functions are the same as for the lower elementary 

recursive functions, with the addition of the bounded 

product. 

• Bounded product: if g is elementary 

recursive, f(𝑚, 𝑥1, … , 𝑥𝑛) = ∏ g(𝑖, 𝑥1, … , 𝑥𝑛)𝑚
𝑖=0 is 

elementary recursive. 

The LOOP programming language is a core imperative 

language in which programs consist only of assignments, 

sequences, and bounded loops.[3]The elementary functions 

are characterized by programs written in LOOP in which the 

nesting of for loops is restricted to a depth of at most 2. 

C. Primitive Recursive Functions 

The primitive recursive functions are the functions that 

can be computed by Turing machines that always halt and 

contain no infinite loops. The definition of primitive 

recursive functions is the same as for elementary recursive 

functions, except that bounded summation and bounded 

product are replaced by primitive recursion. 

• Primitive recursion is such that, given f, a k-ary 

primitive recursive function, and g, a (k+2)-ary 

primitive recursive function, the (k+1)-ary function h is 

defined as the primitive recursion of f and g, i.e. the 

function h is primitive recursive whenh(0,x1, …, xk) = 

f(x1, …, xk) andh(S(y), x1, …,xk) = g(y,h(y,x1, …, xk), 

x1, …, xk)). 

Primitive recursive programming languages include 

LOOP[3] and BlooP[4]. 

D. Total Recursive Functions 

The total recursive functions are the set of functions that 

can be computed by Turing machines that always halt. An 

example of a total computable function that is not primitive 

recursive is the Ackermann function.[5] One common 

version, with nonnegative integers n and m, is defined as 

follows: 

A(0,n)=n+1, 

A(m+1,0)=A(m,1) and 

A(m+1,n+1)= A(m,A(m+1,n)). 

The halting problem is a decision problem that can be 

stated as follows: given the description of an arbitrary 

program and a finite input, decide whether the program will 

halt or run forever. Alan Turing proved in 1936 that a general 

algorithm (running on a Turing machine) to solve the halting 

problem for all possible program-input pairs could not 

exist[6, 7]. The halting problem is undecidable. Assume that 

we have a programming language that captures exactly the 

total recursive functions. It must be well defined, so we can 

construct an algorithm that takes an arbitrary function and a 

finite input and decides whether or not the function can be 

implemented using the programming language. This 

contradicts the fact that the halting problem is undecidable. 
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Therefore a programming language that captures exactly the 

total recursive functions cannot exist. 

E. Partial Recursive Functions 

The partial recursive functions are the set of functions that 

can be computed by Turing machines. A Turing machine is a 

mathematical model of a hypothetical computing machine 

that manipulates symbols on a strip of tape according to a 

predefined set of rules. We already know that Script cannot 

calculate all of the partial recursive functions, so it is not 

Turing-complete. However, it is straightforward to prove it 

directly. Consider a Turing machine defined by a two-

symbol alphabet {0, 1} and one state {A}, with the rules: 

when reading 0, write 0 and move the tape one cell right and 

stay in state A; when reading 1, write 1 and move the tape 

one cell right and stay in state A. It should be clear that such 

a program never halts. A programming language is said to be 

Turing-complete if it can be used to simulate any single-

taped Turing machine. As any program written in Script 

always halts (even with unbounded memory), it is clear that 

Script cannot simulate the described Turing machine. 

Therefore, Script is not Turing-complete. 

F. Discussion 

To conclude this section, Script cannot implement loops, 

so cannot calculate all of the lower elementary recursive 

functions, and is not Turing-complete. More generally, 

because Bitcoin’s data-manipulation rules ensure that the 

system always halts, Bitcoin is not Turing-complete. 

The script is unusual in not being able to implement loops. 

Microsoft’s language Bosque has no loops, but it does have 

recursion. Whilst the vast majority of programming 

languages are Turing-complete. As in practice, most 

computable functions are primitive recursive; one could 

argue that the benefits gained by using a Turing-complete 

language are not worth the costs associated with infinite 

loops. However, in general, the size or complexity of a 

function written in a Turing-complete language is smaller 

than the equivalent function written in a primitive recursive 

programming language.[8] 

In contrast to Bitcoin, Ethereum[9], a blockchain with 

smart contract functionality, provides a virtual machine that 

can execute Turing-complete scripts. In practice, infinite 

loops are avoided by requiring that each transaction sets a 

limit to how many computational steps of code execution it 

can use, and users must pay for this limit in advance using a 

scarce resource. Because the limit is fixed in advance of the 

code being executed, unbounded loops are not possible, and 

thus Ethereum is not Turing-complete either. 
 

III. AUTOMATA THEORY 

Automata theory is the study of abstract computing 

devices that follow a predetermined sequence of operations 

automatically.[10] An automaiton consumes a string of input 

symbols, called a word. For each input symbol, it transitions 

to a new state and continues until all input symbols have 

been consumed. It then accepts or rejects the given string of 

symbols. The set of all the words accepted by an automaton 

is called the language recognized by the automaton. The 

languages recognized by automata may be classified as 

nested subsets. Thusautomata may be ranked in terms of how 

powerful they are. The larger the subset of languages 

recognized, the more power the automata has. Fig. 2 shows 

the hierarchy of automata, along with Bitcoin as a finite 

automaton. 

 
Fig. 2 Hierarchy of automata 

We now consider each type of automata in turn, from the 

least powerful to the most powerful, and how they relate to 

Bitcoin. 

A. Finite Automaton 

A finite automaton is the least powerful type of automata 

that we consider, and can be represented formally by a 5-

tuple, M= 〈Q, Σ, δ, s, F〉, where: 

• Q is a finite set of states, 

• Σ is a finite set of input symbols (the alphabet), 

• δ is the transition function, δ:Q ×Σ →Q, mapping 

state-input pairs to successor states, 

• s is the start state (s∈Q), and 

• F is the set of accepting states (F⊆Q). 

A finite automaton accepts regular languages. A finite 

automaton requires a transition function such that the next 

state is a function of the current state and the current input 

symbol. Is Bitcoin a finite automaton? Bitcoin may be 

considered a finite automaton if we let transactions be the 

input symbols, the blockchain represents states, and the 

Bitcoin Core code the transition function. 

B. Deterministic Pushdown Automaton 

A deterministic pushdown automaton is essentially a finite 

automaton plus a stack and accepts the deterministic context-

free languages. So a pushdown automaton requires a stack, 

plus a transition function such that the next state is a function 

of the current state, the current input symbol, and the symbol 

at the top of the stack. Is Bitcoin a deterministic pushdown 

automaton? The stacks within Script are contained within 

VerifyScript, which does not enable the transfer of any data 
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from one instance to another, so the stacks have no memory 

of past transactions. Alternatively, if the blockchain 

represents the stack, the transition function, VerifyScript, 

must have access to some external state within the Bitcoin 

Core code, but VerifyScript is not a function of any external 

state. Therefore Bitcoin is not a deterministic pushdown 

automaton. 

C. Nondeterministic Pushdown Automaton 

A non-deterministic pushdown automaton is similar to a 

deterministic pushdown automaton, except that the transition 

function is a multivalued function. That is, the transition 

function maps the current state, the current input symbol, and 

the symbol at the top of the stack to a set of states (zero, one, 

or more). We may think of a non-deterministic pushdown 

automaton as branching at every step, and if at least one of 

the permutations accepts the input string, the string is said to 

be recognized by the automaton. A non-deterministic 

pushdown automaton can recognize all context-free 

languages. Because Bitcoin is not a deterministic pushdown 

automaton, it cannot be a non-deterministic pushdown 

automaton (which is more powerful). 

D. Linear Bounded Automaton 

A linear bounded automaton is a non-deterministic Turing 

machine that satisfies the following three conditions[11]: 

• Its input alphabet includes two special symbols, serving 

as left and right end markers. 

• Its transitions may not print other symbols over the end 

markers. 

• Its transitions may neither move to the left of the left 

end marker nor to the right of the right end marker. 

Because Bitcoin is not a pushdown automaton, it is not a 

linear bounded automaton (which is more powerful). 

E. Turing Machine 

We defined a Turing machine above as a mathematical 

model of a hypothetical computing machine that manipulates 

symbols on a strip of tape according to a predefined set of 

rules. Perhaps more useful in the current context is to note 

that a Turing machine is equivalent to a pushdown 

automaton with two stacks. That is, every language that is 

accepted by a Turing machine can also be accepted by a 

deterministic pushdown automaton with two stacks. Whilst a 

non-deterministic two-stack pushdown automaton is 

equivalent to a deterministic two-stack pushdown automaton. 

With a Turing machine, the next state is a function of the 

current input symbol, the current state, the symbol at the top 

of stack 1, and the symbol at the top of stack 2. Turing 

machines accept all recursively enumerable languages. 

Because Bitcoin is not a linear bounded automaton (or a 

pushdown automaton), it cannot be a Turing machine (which 

is more powerful). 

 

 

F. Discussion 

To conclude this section, Bitcoin may be considered a 

finite automaton, but not a deterministic pushdown 

automaton, a non-deterministic pushdown automaton, a 

linear bounded automaton, or a Turing machine. The only 

memory Bitcoin has the blockchain, which represents its 

state. 

IV. CONCLUSION 

In computability theory, there exists a hierarchy of 

functions, from the most to least powerful: partial recursive, 

total recursive, primitive recursive, elementary recursive, and 

lower elementary recursive. Whilst in automata theory, there 

exists a hierarchy of automata, from the most powerful to the 

least powerful: Turing machine, linear bounded automaton, 

non-deterministic pushdown automaton, deterministic 

pushdown automaton, and finite automaton. In both 

instances, Bitcoin lies within or below the least powerful 

category. Bitcoin is essentially a finite automaton that 

employs a scripting language for data manipulation that is 

even less powerful than a lower elementary recursive 

programming language. Bitcoin was designed to be as 

powerful as it needed to be, and no more. No part of Bitcoin 

is Turing-complete. The entire Bitcoin system only becomes 

Turing-complete if we use a Turing-complete programming 

language to broadcast transactions. 
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